(x^2+7x-9)-(2x^2-3x+4)=x

Simple and best practice solution for (x^2+7x-9)-(2x^2-3x+4)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+7x-9)-(2x^2-3x+4)=x equation:



(x^2+7x-9)-(2x^2-3x+4)=x
We move all terms to the left:
(x^2+7x-9)-(2x^2-3x+4)-(x)=0
We add all the numbers together, and all the variables
-1x+(x^2+7x-9)-(2x^2-3x+4)=0
We get rid of parentheses
x^2-2x^2-1x+7x+3x-9-4=0
We add all the numbers together, and all the variables
-1x^2+9x-13=0
a = -1; b = 9; c = -13;
Δ = b2-4ac
Δ = 92-4·(-1)·(-13)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{29}}{2*-1}=\frac{-9-\sqrt{29}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{29}}{2*-1}=\frac{-9+\sqrt{29}}{-2} $

See similar equations:

| 3(x+4)=5(x–6)+32 | | 3(x+4)=5(x–6)+32 | | 10^x+1=100 | | 1^x+1=100 | | 1^(x+1)=100 | | X=527-x | | 3(3g+4)/2=24 | | 2x²+5.5x+4.2=0 | | 12d+1=5d+50 | | 2x/3+9=9 | | 6(x=8)=4.2 | | 2×2(x-1)=48 | | 2×2‘(x-1)=48 | | 7/3y=22 | | 6(a+2)=40.8 | | s*6-18=138 | | 18.5=5c-8 | | 4e-8=0 | | X=x-4/x | | /n+6=5+2 | | 2(5x+3)=57 | | (-5p)=(24-p) | | 11/v=17/13 | | x+1.91=3.02 | | -p^2+44-7p=0 | | 5+1-10/2=x | | 3x+5+8x+16=2x+20 | | 4(3+2x)=52 | | (x-2)+(x-3)+(x-3)+(x-9)=1 | | X/3-y/2+1=0 | | a=21150-(-55)² | | a=√6×3525-(-55)² |

Equations solver categories